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We study the velocity correlations of a tagged particle in an infinite assembly of interacting particles with a
given density in one dimension. The assembly is in contact with a heat bath, and the particles interact via a
hard-core repulsion with each other. We evaluate the two-time velocity correlation function exactly as function
of time when an ensemble average is taken over initial conditions. This correlation function decays rapidly
with time and becomes negative, with the rate of decay increasing with the density. This is followed by a slow
decay toward zero through a power-law behavior of the form −t−3/2 at large times for all densities. We also
consider mobility of the assembly in the presence of a constant force acting on the particles, as well as the
mobility of a tagged particle when only the tagged particle is driven by the force. The power spectrum of
velocity fluctuations is also presented.
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I. INTRODUCTION

The problem of diffusion of hard-core particles in one
dimension or single-file diffusion �SFD� has received sus-
tained interest for the past 50 odd years �1–3�. On the one
hand, it models diffusion in narrow crowded channels, which
occur in a number of physical situations. Few such examples
are: flow of ions and water across channels through cell
membranes �4�, sliding proteins along DNA �5�, transport of
adsorbate molecules through pores of Zeolite �2�, carrier mi-
gration in polymers and superionic conductors �6�, diffusion
of water molecules through carbon nanotubes �7� etc. On the
other hand, the problem is a nice example of an interacting
particle problem, which is amenable to exact solution and
exhibits nontrivial effects of interaction in a qualitative man-
ner �8�.

The first theoretical analysis of the problem was given by
Harris �9� in 1965, who showed that the mean-square dis-
placement of a tagged particle grows as t1/2. This result ex-
cited a lot of interest, and since then a number of authors
have revisited the problem and examined its various aspects
and extensions �10–24�. Since the most physical situations
have several attendant features which do not allow an un-
equivocal verification of this different diffusion behavior, re-
cently some experiments have been designed to provide one-
dimensional channels where this behavior can be examined
without corruption from other physical effects �25–27�. In-
deed the theoretical prediction is realized pretty closely in
these experiments.

The concerns addressed in the existing literature have
largely been the following. Several works have presented
different derivations of the mean-square displacement of the
tagged particle and the probability distribution of its position
�10–13,15,16�. In these works one deals with ensemble av-
erages of an infinite assembly of particles with nonzero den-
sity. These calculations and arguments have greatly enhanced
our physical understanding of the t1/2 behavior of the mean-
square displacement. References �17,20,21� provide rigorous
and exact derivations of these results. The main predictions
regarding diffusion have also been tested by numerical com-
putations �11,14�. In Refs. �20,21,24�, one finds generaliza-

tion of solution to the presence of boundaries and potentials.
In Refs. �19,23�, the authors analyzed the diffusion of a
tagged particle by treating other particles as a stochastic bath.
It is shown numerically that the bath is non-Markovian with
long-range correlations in collision times and free distances
between collisions. Some results have also been obtained for
a finite number of particle with specified initial conditions
�18,22�. Here one does not obtain the t1/2 behavior for which
the necessary condition seems to be the ensemble average
with nonzero density of particles. However, such assemblies
show peculiar spatial correlations for positions and velocities
�22�.

In this paper, our main concern is the velocity correlation
function �VCF� of a tagged particle as function of time.
There are several motivations for this study. The velocity
correlation function is a key theoretical quantity to under-
stand a number of experiments �28�. Experiments such as
quasielastic neutron scattering and modulated gradient spin-
echo NMR measure VCF directly �29�. In the latter tech-
nique the particle carry nuclear spins. We expect that SFD
systems would also be investigated by such techniques.
There are several other spectroscopic techniques such as
quasielastic light scattering, pulsed gradient FT-NMR,
Rayleigh-Brillouin scattering, and Raman scattering that
measure quantities related to time integrals over VCF
�30,31�. These experiments depend on how the coupling of
the probe is connected to the motions of the molecule.

On the theoretical side, since the work of Alder and Wain-
wright which established numerically the existence of long-
time tails for the velocity correlation function for a gas of
hard disks �spheres� in two �three� dimension �32�, there has
been much interest in examining the long-time behavior of
VCF in other systems. For the gas with hard-core interac-
tions hydrodynamic arguments have been advanced to show
that the long-time tails exhibit a power-law behavior of the
form t−d/2 for a d-dimensional system �33�. To our knowl-
edge, similar long-time tails have also been predicted for
three other situations. First situation is for molecular diffu-
sion in confined geometries as the scattering from boundaries
apparently leads to non-Markovian effects �34�. Here the ve-
locity correlations become negative and the decay toward
zero with a power law whose exponent depends on the ge-
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ometry of the boundaries. Second case is that of diffusion of
a moving particle in a static random medium �35�. In this
case also the velocity correlation function becomes negative
and has a long-time power-law decay of the form −t−�d+2�/2.
Finally Spohn �36� argued for a similar behavior for one-
dimensional models of stochastic lattice gases. For the SFD,
the VCF of the tagged particle has been considered in Refs.
�19,23�. They have shown that for the large times, the VCF
follows a power law of the form −t−3/2, which is required for
the consistency with the large time behavior of the mean-
square displacement, ��x2�t��� t1/2. Marchesoni and Taloni
�19� also obtained the VCF for all times by numerical simu-
lations.

Here we present an exact calculation of the VCF for all
times using Levitt’s method �10�. This method has been criti-
cized as being not rigorous, but the recent work of Kalinay
and Percus �20� achieves the same result in a rigorous man-
ner, thus greatly clarifying Levitt’s approach. Levitt derived
results mainly in the long-time limit. So he used the long-
time limit of the single-particle diffusion propagator in which
the velocity correlations get ignored. Accordingly, for our
calculation we use the full position-velocity distribution in a
stochastic environment as given by Chandrasekhar �37�,
which is valid at all times. We present detailed dependence
of velocity correlator of the tagged particle with time, den-
sity, and temperature. We also relate the velocity correlations
to the mobility of the particles when they are subjected to a
uniform force. We have calculated the mobility in two situ-
ations. The first situation considers the flow of particles when
a force acts uniformly on all the particles of the assembly.
Here we have obtained the distribution function of position
for a tagged particle and find that the distribution is Gaussian
with a width which is increasing as t1/2 as in the earlier case
but with a drift which corresponds to the single-particle mo-
bility of the noninteracting particles. This is to be expected
on general grounds, as the two-particle momentum-
conserving interactions cannot affect the dc conductivity.
The second situation we consider is that of the mobility of a
tagged particle in an assembly when the force acts only on
the tagged particle. In this case the mobility depends on the
density and the interactions do matter. This calculation is
relevant to the situation when a small fraction of the particles
in the channel are charged and one is interested in their flow
under an applied field. Here the mobility is directly obtained
from the time integral of the velocity autocorrelation func-
tion of the tagged particle.

The paper is organized as follows. In Sec. II, we give a
brief account of Levitt’s method and then present the calcu-
lation of the velocity correlation function. In Sec. III, we first
present the calculation of the position distribution function of
a tagged particle in the presence of a uniform force in the
long-time limit. Next we present the calculation of the mo-
bility of a tagged particle when the force acts on just the
tagged particle through the use of Kubo formula. We also
include the calculation of the power spectrum of the velocity
fluctuations. Finally, we conclude the paper by presenting a
summary of our results in Sec IV

II. VELOCITY AUTOCORRELATION FUNCTION

The model system consists of identical interacting par-
ticles on an infinite one-dimensional line with a density de-

noted by �. We take the density to be uniform initially. Par-
ticles are interacting via hard-sphere interaction, which
implies that the particles cannot cross each other and when
two particles collide they simply interchange their trajecto-
ries. Note that this is true only when the particles are identi-
cal. Further this assembly of particles is in equilibrium with
a thermal bath at temperature T. The initial velocity distribu-
tion of the particles is taken to be the Maxwellian distribu-
tion. In the absence of interactions the trajectories of the
particles are independent and are given by the distribution
h�x ,u , t �x0 ,u0�, which gives the probability of finding the
particle at time t with position x and velocity u, if its initial
position and velocity are x0 and u0, respectively. For the
evaluation of any one-particle correlation function we need
the conditional single-particle position-velocity distribution
function f�x−x0 ,u , t �u0� in the interacting assembly. The
function f gives the probability of finding a tagged particle at
position x with velocity u at time t given that it was initially
at x0 with velocity u0 on ensemble averaging over the initial
positions and velocities of all the other particles. An exact
expression of f�x ,u , t �u0� was derived by Levitt �10�.

In order to be reasonably self-contained, we present a
brief account of this result. To understand the following ex-
pressions, it is necessary to refer to Fig. 1, which schemati-
cally represents the trajectories of a small set of particles
around the tagged particle in a space-time plot for a given
realization. The bold line shows the trajectory followed by
the tagged particle, which is labeled 0 and is initially at x
=0. To keep track of the position of the particle a straight
line is drawn joining the points �x , t� and �0,0�, and is called
the test trajectory. It is shown as a dotted line in Fig. 1. Since
the sequence of particles cannot change, the tagged particle
can be at x at time t only under the following conditions. At
a time slightly before t it should be: �1� the first left neighbor
of the test trajectory; �2� the first right neighbor of the test

x

t

�3 �2 �1 0
x � 0

1 2 3

� x , t �.

FIG. 1. This diagram shows schematic plots of the trajectories
of a few particles around the tagged particle labeled as 0 in a typical
realization. When the two identical particles collide, their velocities
get exchanged or in other words trajectories simply pass through
one another. The bold line shows the trajectory followed by the
tagged particle. A dashed line is drawn joining points �x , t� and �0,0�
and is called the test trajectory. In order to be at x at time t, a little
before t the particle must be either the first neighbor of the test
trajectory or be on it. Note that whenever any other particle crosses
the test trajectory the neighborhood status of the tagged particle
changes by +1 if crossing is from the left and −1 if the crossing is
from the right. The kinks in particle trajectories are due to interac-
tion with the stochastic environment of the heat bath.
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trajectory; and �3� on the trajectory h�x ,u=x / t , t �0,u0�. Each
of the first two cases can occur in two ways. The particle can
initially start being left or right of the test trajectory. Now the
position of the tagged particle as neighbor with respect to
test trajectory changes when another particle crosses the test
trajectory. Thus it can remain the first neighbor only if the
net number of crossings of the test trajectory by all particles
is �1, where the net number is defined to be: number of
crossings from the right�number of crossings from the left.
It will be found on the initial trajectory if the number of
crossings is zero. Combining all these five possibilities, Lev-
itt �10� obtained

f�x,u,t�u0� = ��ER�A0PR + A1PL� + EL�A−1PR + A0PL��

+ A0h�x,u,t�0,u0� . �1�

Various terms in the above formula are defined as follows.
ER�L� is defined to be the probability that the particle which is
initially at x=0 with the velocity u0 is to the right�left� of x at
time t. These are given in terms of the single-particle distri-
bution as

ER = �
x

�

dx��
−�

�

duh�x�,u,t�0,u0� ,

EL = �
−�

x

dx��
−�

�

duh�x�,u,t�0,u0� . �2�

PR�L��x ,u , t� denote the probability that a particle initially to
the right�left� of the origin is found at x at time t. These are
given by

PR�x,u,t� = �
0

�

dx��
−�

�

du0h�x,u,t�x�,u0�g�u0� ,

PL�x,u,t� = �
−�

0

dx��
−�

�

du0h�x,u,t�x�,u0�g�u0� , �3�

where g�u0� is the probability distribution of the initial ve-
locities of the particles. A��x , t� denotes the probability that
the test trajectory is crossed a net � times, and can be written
in terms of probabilities QR and QL as follows:

A��x,t� = 	
n=0

�

QR�x,n + �,t�QL�x,n,t� . �4�

Here QR�L��x ,n , t� gives the probability that n trajectories
which were started to the right�left� of test trajectory are to
left�right� of test trajectory. These are given by

QR�x,n,t� =
e−B̄R�B̄R�n

n!
,

QL�x,n,t� =
e−B̄L�B̄L�n

n!
. �5�

Thus A��x , t� is

A��x,t� = exp�− �B̄R + B̄L��
 B̄R

B̄L

��/2

I��2�B̄RB̄L�1/2� , �6�

where I��x� denotes the modified Bessel function and B̄R�L�
denotes the probability that a particle crosses the test trajec-
tory from right�left� averaged over the initial position. These
are given as

B̄R = ��
0

�

dx0�
−�

x

dx��
−�

�

du�
−�

�

du0h�x�,u,t�x0,u0�g�u0� ,

B̄L = ��
−�

0

dx0�
x

�

dx��
−�

�

du�
−�

�

du0h�x�,u,t�x0,u0�g�u0� .

�7�

We wish to calculate the velocity autocorrelation function
for all times starting from zero as the calculation of mobility
requires a complete time integral over the VCF. The earlier
works by Levitt and others take h�x ,u , t �x0 ,u0� to be a dif-
fusion propagator multiplied by a velocity distribution func-
tion. Such a propagator is useful only for the long-time limit
of the position distribution function and do not yield a non-
zero value for the velocity correlator as these correlations
decay rather fast with time. Accordingly we take
h�x ,u , t �x0 ,u0� to be the full position-velocity distribution in
a stochastic environment as given by Chandrasekhar �37�.
This function is

h�x,u,t�x0,u0� =
1

2��FG − H2
exp
−

1

2�FG − H2�

	�GX2 − 2HXS + FS2�� , �8�

where

X = x − x0 −
u0



�1 − e−
t� ,

S = u − u0e−
t,

F =
kT

m
2 �2
t − 3 + 4e−
t − e−2
t� ,

G =
kT

m
�1 − e−2
t� ,

H =
kT

m

�1 − e−
t�2. �9�

The heat bath on the particles is characterized by two param-
eters, temperature T and the velocity relaxation rate 
. The
relaxation rate 
 sets the time scale for the problem. Using
this value of h�x ,u , t �x0 ,u0�, we have evaluated the various
probabilities involved in the calculation of f . These are given
below,

ER =
1

2
1 − erf
 x − �

�2F
�� ,
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EL =
1

2
1 + erf
 x − �

�2F
�� , �10�

where �=
u0


 �1−e−
t�.

B̄R = ��d/2
 1
��

e−�2
+ ��1 + erf����� ,

B̄L = ��d/2
 1
��

e−�2
− ��1 − erf����� , �11�

where

d = F +
kT

m

1 − e−
t



�2

,

� =
x

�2d
, �12�

PR =
1

2��C
�

−�

x

exp
−
1

2C
�ay2 − 2byu + du2��dy ,

PL =
1

2��C
�

x

�

exp
−
1

2C
�ay2 − 2byu + du2��dy . �13�

Here

C = FG − H2 +
kT

m

G
1 − e−
t



�2

− 2He−
t
1 − e−
t



� + Fe−2
t� ,

a = G +
kT

m
e−2
t,

b = H +
kT

m
e−
t
1 − e−
t



� . �14�

The velocity autocorrelation function is the average of prod-
uct of velocities of the tagged particle at time t and at initial
time over the distribution function f�x ,u , t �0,u0�. It takes the
form,

�u�t�u�0�� = �
−�

�

dx�
−�

�

du�
−�

�

du0uu0��ER�A0PR + A1PL�

+ �EL�A−1PR + A0PL� + A0h�x,u,t�0,u0��g�u0� .

�15�

Here we take g�u0� to be the Maxwell-Boltzmann velocity
distribution function at temperature T. Using Eqs. �8�, �10�,
�11�, and �13�, we get the following result for the VCF:

�u�t�u�0�� = �
 kT

m
�
1 − e−
t



� b

2�d

	�
−�

�

dxe−x2/d�A1 + A−1 − 2A0� + I5, �16�

where I5 is the contribution to velocity correlation when
tagged particle arrives at x on its initial trajectory. It is given
by

I5 =
1

�2�

kT

m

H

F

 �1 − e−
t�


d3/2 ��
−�

�

dxx2A0e−x2/2d

+
1

�2�

 kT

m
�2
e−
t −

H�1 − e−
t�

F

�
	
 �1 − e−
t�



�2 1

d5/2�
−�

�

dxx2A0e−x2/2d

+
1

�2�

kT

m

e−
t −

H�1 − e−
t�

F

� F

d3/2�
−�

�

dxA0e−x2/2d.

�17�

We have done the numerical integration of Eq. �16�. The
velocity correlation function has the scale of thermal velocity
and can be written as function of two dimensionless vari-
ables in the following manner:

�u�t�u�0�� =
kT

m

��, �̃� , �18�

where �=
t is the dimensionless time and �̃= �


� kT

m� is the
dimensionless measure of density. �̃ is also the inverse of the
average collision time measured in unit of 
−1.

In Figs. 2 and 3, we have plotted the scaled velocity cor-
relation function 
�� , �̃� as function of � for different values
of �̃. As is clear from the figures 
�� , �̃� is not a monotoni-
cally decreasing function of �. Initially it decreases fast with
� and becomes negative. The initial rate of decay increases
rather rapidly with the dimensionless density. After the func-
tion reaches a negative minimum it rises slowly toward the

0 1 2 3 4 5
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�Τ

,
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�
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Ρ
�
�0.8
Ρ
�
�0.6
Ρ
�
�0.4
Ρ
�
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FIG. 2. �Color online� Scaled velocity correlation function

�� , �̃� vs dimensionless time � for small values of �̃.
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zero value. Note that these plots seem to match well with the
numerical simulations of Marchesoni and Taloni �19�. We
have investigated the late time behavior of velocity autocor-
relation by numerical fitting of the data. We find excellent fits
to the power law −�−� for a rather large range of �. Figure 4
shows the fits for a range of small �̃, while Fig. 5 shows the
fits for a range of larger �̃. We find �=3 /2 for the entire
range of dimensionless densities that we have investigated. It
is possible to evaluate the formula for VCF, Eq. �16�, in
small time and large time limits. These are

�u�t�u�0�� �
kT

m

1 − 
t
1 +

4�



� kT

m�
�� 
t → 0,

�19�

and

�u�t�u�0�� � −� kT

m�


1

8�t3/2 
t → � . �20�

The latter result differs from the asymptotic result derived by
Taloni and Lomholt �23� by a factor of 1/2. As pointed out in

Ref. �19�, the long-time behavior of VCF should be consis-
tent with the t1/2 behavior of MSD due to the following re-
lation:

��x2�t�� = 2�
0

t

�t − ���u���u�0�� , �21�

which is satisfied by the −t−3/2 behavior. It is interesting to
note that this long-time behavior is identical to the behavior
of the velocity correlations in the Lorentz model �35� as well
as for stochastic lattice gases in one dimension �36�. Further
the same behavior is also observed for the diffusion in the
confined geometry situation for the case of long narrow tubes
�34�. An experiment using modulated gradient spin-echo
NMR has measured VCF in water trapped in a porous mate-
rial which shows at long times the −t−3/2 behavior �29�. For
these experimental conditions boundary scattering may be
more relevant than single-file diffusion.

III. CALCULATION OF MOBILITY

In this section, we consider the response of the system to
a weak uniform force. Our calculations are done in two situ-
ations. In the first situation the uniform force pushes all the
particles equally, such as subjecting an assembly of charged
particles to a uniform electric field. In the second situation,
we calculate the mobility of a tagged particle when the force
acts only on the tagged particle. This case is relevant to the
physical situation in which a small fraction of the particles in
the channel are charged and are subjected to an electric field.
The present calculation, however, ignores the Coulomb inter-
action between these particles.

We first present the calculation of the position probability
distribution in the presence of a weak force in the long-time
limit when the force acts on all the particles equally. We
again use the method given by Levitt �10�. For this purpose
only the long-time limit of h is needed which in the presence
of an external force is given by

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Τ

Φ
�Τ
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Ρ�
� Ρ

�
� 10
Ρ
�
� 8
Ρ
�
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Ρ
�
� 4
Ρ
�
� 2

FIG. 3. �Color online� Scaled velocity correlation 
�� , �̃� vs
dimensionless time � for large values of �̃.
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FIG. 4. �Color online� Numerical fit of the scaled velocity auto-
correlation function 
�� , �̃� for large time � and for small values of
�̃. Here various symbols shows the fitted data and continuous lines
are plots of the functions which best fit the data.
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ρ∼ = 8
ρ∼ = 9

FIG. 5. �Color online� Numerical fit of the scaled velocity auto-
correlation function 
�� , �̃� for large time � and for large values of
�̃. Here again various symbols shows the fitted data and continuous
lines are plots of the functions which best fit the data.
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h�x,u,t�x0,u0� =
1

�4�Dt
e−�x − x0 − �0Et�2/4Dtg�u� , �22�

where g�u� is any normalized function of velocity. �0 and E
are the single-particle mobility and applied force, respec-
tively. Note that the single-particle mobility �0 results from
the interaction of the particle with the heat bath, and in the
present case is given by 1 /m
. Levitt �10� has argued that in
the long-time limit, the position distribution function is given
by A0�x , t� for the following reason. A0�x , t� is the spatial
probability distribution of the line segment which connects
the two neighboring particles which were initially on the
opposite side of test trajectory. In long-time limit this distri-
bution �with a different normalization� is the same as posi-

tion probability p�x , t�. We have calculated the B̄R and B̄L
using Eq. �22�. These are given by

B̄R = 2��Dt/��1/2�
−�

�

�� − ��e−�2
d� ,

B̄L = 2��Dt/��1/2�
�

�

�� − ��e−�2
d� , �23�

where �=
�u−�0E�t

�4Dt
. In order to find the value of A0 in long-

time limit, we have evaluated B̄R and B̄L for t→�. These are
given as

BR = ��Dt/��1/2�1 + ���� ,

BL = ��Dt/��1/2�1 − ���� .

Thus p�x , t� �after normalizing A0� is given by

p�x,t� =
��

2��Dt�1/4exp
− 
 ��2

16Dt
�1/2

�x − �0Et�2� . �24�

From this result it is clear that the mean-square displacement
is again proportional to t1/2. But the important point is that
there is a nonzero mean displacement, which is equal to
�0Et. This implies that the mobility of the tagged particle is
same as the free particle mobility �0, or in other words mo-
bility is unchanged by the interaction. This provides a check
to the general argument that the momentum-conserving two-
body interaction does not affect the mobility.

Next we present the result for the second situation in
which the force acts on just the tagged particle. In this case
the mobility �1 can be obtained from the Green-Kubo for-
mula, as given by

�1 =
e

kT
�

0

�

�u�t�u�0��dt = �0�
0

�


��, �̃�d� , �25�

where the above expression is specialized to the charged par-
ticle and e denotes the charge of the particle. This formula
shows that �1 depends on the density and temperature in a
specific way through �̃. In Fig. 6 we have shown the varia-
tion in �1��� /�0 with �. This mobility is seen to be a strong
function of the dimensionless density �̃. The inset of Fig. 6
shows its rapid fall at small values of �̃ while the main plot
in Fig. 6 shows the variation over the larger range of �̃.

These results on mobility should be amenable to experimen-
tal verification in suitably prepared systems as the theory
gives rather specific predictions regarding the dependence of
mobility on temperature and particle density.

Since many of the experiments measure the power spec-
trum of the velocity fluctuations, we have numerically calcu-
lated the cosine transform of VCF which gives the power
spectrum S��� to be

S��� = �
0

�

�u�t�u�0��cos��t�dt . �26�

Three plots of S̃�� /
�= �m
 /kT�S��� at typical densities �̃
=0.2, 1.0, and 2.0 are shown as function of dimensionless
frequency � /
 in Fig. 7. The power spectrum curves become
smaller with the increasing particle density, as the motion of
the particle gets inhibited with increasing density. The curves
rise with frequency and then show a slight decrease at low
densities, but seem to saturate at higher frequencies. This is
indicative of high-frequency rattling motion of the particles.

IV. CONCLUSION

We conclude the paper with a summary of our results. We
have evaluated the velocity autocorrelation function of a
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tagged particle in an infinite assembly of interacting particles
with a finite density in one dimension. Particles interact via
the hard-core interaction. We believe this is the first report of
an analytic calculation of the velocity correlation function
for all times. We find that the velocity correlation shows an
unusual behavior. With time the velocity correlator decreases
and becomes negative. After reaching a negative minimum
the function decays slowly toward zero obeying the power
law −t−3/2 over several decades in time. We have verified that
when all the particles are subjected to the same uniform force
the mobility of a tagged particle remains unchanged from its

noninteracting value. On the other hand when the force is
applied to just one tagged particle in the system, its mobility
decreases rapidly with the density of the particles. The re-
sults on this kind of mobility are relevant to the study of
electrical transport in channels in which a small fraction of
particles are charged. Here we have made specific predic-
tions regarding the dependence of mobility on particle den-
sity and temperature which are amenable to experimental
verification. For direct comparison to experimental results,
we have also presented the numerical results on the power
spectrum of the velocity fluctuations.
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